Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.DecimalType

import org.apache.comet.CometConf
import org.apache.comet.CometConf.{SCAN_NATIVE_DATAFUSION, SCAN_NATIVE_ICEBERG_COMPAT}
import org.apache.comet.CometSparkSessionExtensions

trait CometBenchmarkBase
Expand Down Expand Up @@ -164,6 +165,32 @@ trait CometBenchmarkBase
benchmark.run()
}

protected def addParquetScanCases(
benchmark: Benchmark,
query: String,
caseSuffix: String = "",
extraConf: Map[String, String] = Map.empty): Unit = {
val suffix = if (caseSuffix.nonEmpty) s" ($caseSuffix)" else ""

benchmark.addCase(s"SQL Parquet - Spark$suffix") { _ =>
withSQLConf(extraConf.toSeq: _*) {
spark.sql(query).noop()
}
}

for (scanImpl <- Seq(SCAN_NATIVE_DATAFUSION, SCAN_NATIVE_ICEBERG_COMPAT)) {
benchmark.addCase(s"SQL Parquet - Comet ($scanImpl)$suffix") { _ =>
withSQLConf(
(extraConf ++ Map(
CometConf.COMET_ENABLED.key -> "true",
CometConf.COMET_EXEC_ENABLED.key -> "true",
CometConf.COMET_NATIVE_SCAN_IMPL.key -> scanImpl)).toSeq: _*) {
spark.sql(query).noop()
}
}
}
}

protected def prepareTable(dir: File, df: DataFrame, partition: Option[String] = None): Unit = {
val testDf = if (partition.isDefined) {
df.write.partitionBy(partition.get)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.spark.sql.benchmark

import org.apache.spark.benchmark.Benchmark
import org.apache.spark.sql.types._

import org.apache.comet.CometConf

/**
* Benchmark to measure Comet Iceberg read performance. To run this benchmark:
* `SPARK_GENERATE_BENCHMARK_FILES=1 make
* benchmark-org.apache.spark.sql.benchmark.CometIcebergReadBenchmark` Results will be written to
* "spark/benchmarks/CometIcebergReadBenchmark-**results.txt".
*/
object CometIcebergReadBenchmark extends CometBenchmarkBase {

def icebergScanBenchmark(values: Int, dataType: DataType): Unit = {
val sqlBenchmark =
new Benchmark(s"SQL Single ${dataType.sql} Iceberg Column Scan", values, output = output)

withTempPath { dir =>
withTempTable("icebergTable") {
prepareIcebergTable(
dir,
spark.sql(s"SELECT CAST(value as ${dataType.sql}) id FROM $tbl"),
"icebergTable")

val query = dataType match {
case BooleanType => "sum(cast(id as bigint))"
case _ => "sum(id)"
}

sqlBenchmark.addCase("SQL Iceberg - Spark") { _ =>
withSQLConf(
"spark.memory.offHeap.enabled" -> "true",
"spark.memory.offHeap.size" -> "10g") {
spark.sql(s"select $query from icebergTable").noop()
}
}

sqlBenchmark.addCase("SQL Iceberg - Comet Iceberg-Rust") { _ =>
withSQLConf(
CometConf.COMET_ENABLED.key -> "true",
CometConf.COMET_EXEC_ENABLED.key -> "true",
"spark.memory.offHeap.enabled" -> "true",
"spark.memory.offHeap.size" -> "10g",
CometConf.COMET_ICEBERG_NATIVE_ENABLED.key -> "true") {
spark.sql(s"select $query from icebergTable").noop()
}
}

sqlBenchmark.run()
}
}
}

override def runCometBenchmark(mainArgs: Array[String]): Unit = {
runBenchmarkWithTable("SQL Single Numeric Iceberg Column Scan", 1024 * 1024 * 128) { v =>
Seq(BooleanType, ByteType, ShortType, IntegerType, LongType, FloatType, DoubleType)
.foreach(icebergScanBenchmark(v, _))
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.spark.sql.benchmark

import org.apache.spark.benchmark.Benchmark

/**
* Benchmark to measure partition column scan performance. This exercises the CometConstantVector
* path where constant columns are exported as 1-element Arrow arrays and expanded on the native
* side.
*
* To run this benchmark:
* {{{
* SPARK_GENERATE_BENCHMARK_FILES=1 make \
* benchmark-org.apache.spark.sql.benchmark.CometPartitionColumnBenchmark
* }}}
*
* Results will be written to "spark/benchmarks/CometPartitionColumnBenchmark-**results.txt".
*/
object CometPartitionColumnBenchmark extends CometBenchmarkBase {

def partitionColumnScanBenchmark(values: Int, numPartitionCols: Int): Unit = {
val sqlBenchmark = new Benchmark(
s"Partitioned Scan with $numPartitionCols partition column(s)",
values,
output = output)

withTempPath { dir =>
withTempTable("parquetV1Table") {
val partCols =
(1 to numPartitionCols).map(i => s"'part$i' as p$i").mkString(", ")
val partNames = (1 to numPartitionCols).map(i => s"p$i")
val df = spark.sql(s"SELECT value as id, $partCols FROM $tbl")
val parquetDir = dir.getCanonicalPath + "/parquetV1"
df.write
.partitionBy(partNames: _*)
.mode("overwrite")
.option("compression", "snappy")
.parquet(parquetDir)
spark.read.parquet(parquetDir).createOrReplaceTempView("parquetV1Table")

addParquetScanCases(sqlBenchmark, "select sum(id) from parquetV1Table")

// Also benchmark reading partition columns themselves
val partSumExpr =
(1 to numPartitionCols).map(i => s"sum(length(p$i))").mkString(", ")

addParquetScanCases(
sqlBenchmark,
s"select $partSumExpr from parquetV1Table",
caseSuffix = "partition cols")

sqlBenchmark.run()
}
}
}

override def runCometBenchmark(mainArgs: Array[String]): Unit = {
runBenchmarkWithTable("Partitioned Column Scan", 1024 * 1024 * 15) { v =>
for (numPartCols <- List(1, 5)) {
partitionColumnScanBenchmark(v, numPartCols)
}
}
}
}
Loading